日本福岛核事故_日本福岛核事故核污水首次排放时间是?

       感谢大家参与这个关于日本福岛核事故的问题集合。作为一个对此领域有一定了解的人,我将以客观和全面的方式回答每个问题,并分享一些相关的研究成果和学术观点。

1.日本福岛核电站泄漏事故属于几级?

2.福岛第一核电站的历史事件

3.福岛核电站真的就无法挽救了么?一会发生很严重的事故么?为什么不用液氦和混凝土封堆呢?

4.福岛第一核电站的事故情况

5.日本福岛核电站事故危害有多大

6.日本核泄漏是哪年发生的?

日本福岛核事故_日本福岛核事故核污水首次排放时间是?

日本福岛核电站泄漏事故属于几级?

       在国际核事件分级表(INES)中被分类为最严重的7级。

       福岛第一核电站事故(日语:福岛第一原子力発电所事故)是2011年3月11日在日本福岛第一核电站发生的核事故,由日本东北地方太平洋近海地震和伴随而来的海啸所引发。这起事故在国际核事件分级表(INES)中被分类为最严重的7级。

       2015年3月调查发现,堆芯内所有核燃料都已熔毁。这起事故是东日本大震灾的次生灾害之一。截至2019年3月,这起事故造成的受灾区域面积几乎与名古屋市相同(337km2)。

       东北地方太平洋地震于2011年3月11日发生时,福岛第一核电站的1-3号机正在运行,4-6号机停机处于定期安全检查状态。地震后,1-3号机的所有反应堆自动停止了。地震引发了电源故障,导致机组失去了外部供电?,但还是成功启动了应急柴油发电机。

       地震发生约50分钟之后,最高高度约为14米~15米(电脑分析后得出的高度为13.1米)的海啸袭击了核电站,设置在地下室的应急柴油发电机淹没在水中而停止运行。

       此外,电器、水泵、燃料罐、紧急电池等大部分设备受损或被水冲走,核电站陷入了全厂停电(Station Blackout,缩写:SBO)。

       因此,水泵无法运行,不能继续向堆芯和乏燃料池注入冷却水,也就不能带走核燃料的热量。由于核燃料在停堆后仍然会产生巨大的衰变热,如果不继续注水,堆芯内就会开始空烧。最终,核燃料会因自身放热而熔化。

       在1-3号机中,由于燃料组件的包壳熔化,包壳中的燃料颗粒落到反应堆压力容器底部,形成了堆芯熔毁。熔化的燃料组件温度极高,熔穿了压力容器底部,并熔化了控制棒插入孔和密封处,一部分燃料从开孔处落入反应堆安全壳。

       此外,由于燃料本身的高温以及安全壳中产生的水蒸气和氢气引起的压力急剧升高,安全壳受到了部分损坏,1号机组的管道部分也已损坏。

       另外,1-3号机熔毁的堆芯向反应堆、汽轮机厂房内释放了大量氢气,导致1、3、4号机发生了氢气爆炸,厂房和周围的设施被严重损坏(虽然在事故发生时4号机处于停机状态,但是氢气很可能从3号机通过两个机组共用的排气管进入4号机,因为该管道在停电时是打开的)。

       事故中的一系列事件在周围环境中泄漏了大量放射性物质,包括排气泄压操作、氢气爆炸、安全壳破损、管道蒸汽泄漏、冷却水泄漏等。1-3号机相继发生堆芯熔毁,1、3、4号机发生氢气爆炸,使得这起事故成为了前所未有的特大核事故。

       事故中向大气中泄漏的放射性物质量有多种说法。根据东京电力的推算,共泄漏了大约90万亿贝克勒尔(Bq)的铀元素和碘-131、镉-137和钚-134大规模释放,大约相当于切尔诺贝利事故520万亿Bq的六分之一。

       截至2011年8月,平均每半月泄漏2亿Bq(0.0002TBq)的铀元素。。辐射量在每年5毫希沃特(mSv)以上的地区大约有1800km2,其中每年20mSv以上的则有500km2。

       2012年,日本政府将福岛第一核电站周围20km圈内的地区作为警戒区域,圈外辐射量高的地区作为“计划中的避难区域”,共计约10万居民撤离。2012年4月,根据地区的辐射量重新指定了准备解除避难指示区域、限制居住区域、返回困难区域。

       原则上不允许进入返回困难区域。2014年4月,一些地区逐渐解除了避难指示。2020年3月,全部准备解除避难指示区域及限制居住区域都已解除避难指示,但返回困难区域除了一部分以外仍然保持避难指示。

       截至2021年,废炉工作正在进行中,如果进行顺利,将在2041年到2051年左右完成。

       2021年4月13日,日本政府正式决定将约120万吨稀释后的核污水排入大海,预计2023年开始正式排放。

       事故后各反应堆状态

       2015年,使用缈子对反应堆内部进行透视,结果发现1号机的核燃料全部融毁并落入了压力容器底部,同时也有一部分从压力容器底部漏到安全壳底部。

       2号机的燃料中有七成以上融化后落入容器底部,2016年7月调查发现落下的核燃料大都在压力容器的底部。另根据2014年东电的分析,3号机大部分的核燃料都穿过了压力容器的底部而落入安全壳。

       2011年5月24日,东京电力发文称,根据测得的压力数据,在1号机安全壳发现有直径7厘米的孔,2号机的安全壳则有两个直径10厘米的孔。这说明事故可能不仅是堆芯熔毁,还可能进一步造成了堆芯熔穿。

       5月26日,东京电力发文称,5月20日测量显示1-3号机每个机组都产生1000kW-2000kW的衰变热,地震之后半年内一直保持在1000kW左右。

       铀燃料熔化了包壳,仍在继续从压力容器、安全壳以及管道的破洞、2号机压力抑制水池的破洞中向外部环境中泄漏放射性物质。3号机堆芯使用的燃料是混合氧化物制成的MOX燃料,除了铀以外还含有钚,因此其对大气、海水和地下水的泄漏被尤为关注。

       2019年2月13日,东京电力使用机器人进行了一次调查,以确认2号机中沉积物的硬度,这些沉积物被认为是熔毁的核燃料。这次调查是对堆芯熔毁的1-3号机进行的首次接触调查。根据策略,调查结果将用于帮助确定核燃料取出的计划。

       计划中,取样调查将在2020年下半年进行。核燃料的取出预计将于2022年正式开始。

福岛第一核电站的历史事件

       日本总是核泄漏有以下原因造成:

       1、地震和海啸:福岛核电站位于日本东北部的海岸线上,2011年3月11日发生的9.0级大地震引发了近10米高的海啸,导致核电站周边区域遭受严重破坏。在这种情况下,核反应堆的安全系统无法正常工作,导致核反应堆失控而发生泄漏。

       2、设备故障:除了自然灾害外,设备故障也是福岛核事故的诱因之一。在地震和海啸引发的复杂环境下,核电站的各种设备和系统都承受着极大的压力,其中包括供电系统等关键设备的故障,导致核反应堆无法正常运行。

       3、管理不当:在福岛核事故中,也存在着一定程度的管理不当问题。在事故前核电站未能充分考虑到地震和海啸等自然灾害的可能性,没有采取足够的安全预防措施。此外,在事故后的应对过程中,也存在着一些不足和失误。

福岛核电站真的就无法挽救了么?一会发生很严重的事故么?为什么不用液氦和混凝土封堆呢?

       1976年4月2日,区域内发生火灾,但没有对外公开。然而内部有人向田原总一朗告发,才让外界得知。被举报后一个月,东京电力公司承认了这一事故。

       1978年11月2日三号机发生日本首福岛第一核电站次的临界事故,不过该事故直到2007年3月22日才被披露。

       1990年9月9日,3号机发生国际核事件分级表中的第二级事故。因主蒸汽隔离阀停止针损坏,反应堆压力上升,引发“中子束过量”讯号,导致自动停止。

       1998年2月22日,4号机于定期检查中,137根控制棒中的34根在50分钟间、全部被拔出25分之1(缺口约15cm)。

       2011年3月11日,因受东北地方太平洋近海地震影响,核电站当天起停止运作,并多次发生爆炸,并定义为4级核灾变(1号机:3月12日、3号机:14日,2号机及4号机亦于15日传出爆炸声,其中4号机更于15日和16日两次发生火灾),此次事故称为福岛第一核电站事故。

       2011年3月14日法国原子能安全委员会(ASN)根据1至7的国际分级制,日本发生的核能事故可认定为第5级或第6级,与美国1979年的三哩岛核泄漏事故相当。

       2011年3月16日根据日本朝日新闻社报道,国际原子能总署IAEA已经将此次日本福岛核灾定义为6级核灾变,仅次于当年俄国的切尔诺贝利事件,当时是被列为7级,不过若状况继续恶化,IAEA不排除将福岛核灾级数往上调。目前福岛6座反应堆已岌岌可危。东京电力表示、抢救3福岛第一核电站号反应堆为最高优先,次为4号反应堆。4号机15日上午爆炸,外墙裂出2个8m?破洞,造成置放废燃料棒的储水池曝露于大气中。1号反应堆12日爆炸,堆心有熔毁情况,估计燃料棒70%受损。2号反应堆15日爆炸,堆心亦有熔毁情况,燃料棒30%受损。不过,东京电力表示,2号反应堆温度已趋稳定,堆内压力也已下降。5号及6号反应堆15日出现温度微升,目前正灌水进入这2座反应堆中,以冷却降温。

       2011年3月19日根据日本时事通信社报道,5号机,19日上午恢复冷却功能,且5、6号机的废燃料池水,亦开始循环。东京电力表示,1、2号机的供电功能还在努力恢复。原子力安全保安院表示,1、2、5、6号机,19日可望连结外部电源。3、4号机,在20日也可望恢复外部供电。

       2011年3月31日东京电力宣布1至4号机组报废。

       2013年12月18日日本东京电力公司决定,永久关闭福岛第一核电站最后两座核反应堆。

福岛第一核电站的事故情况

       福岛核电站的情况并不是无法挽救,但是需要非常复杂和长期的工作。在2011年发生核事故后,已经采取了许多措施来稳定和恢复核电站,包括使用蓄电池、柴油发电机和水泵等设备来冷却反应堆和乏燃料水池。但是,这个过程仍然存在一些挑战和风险。

       首先,福岛核电站的几个反应堆在事故中受到了严重的损坏,导致它们无法正常停止反应。因此,必须持续地冷却它们,以避免它们重新启动或过热。此外,乏燃料水池也需要不断地冷却,以避免辐射物质的进一步裂变和释放。

       其次,福岛核电站的位置和地质条件也带来了一些挑战。核电站位于地震和海啸的易发区域,因此必须采取额外的措施来确保核电站的安全。这些措施包括在反应堆周围建造地下大坝和防护墙,以防止放射性物质进一步泄漏。

       关于使用液氦和混凝土封堆的想法,实际上在某些情况下是可行的。例如,一些早期的核反应堆就使用了混凝土外壳来保护它们。但是,对于福岛核电站来说,这个过程可能会非常困难和危险。首先,需要将所有的燃料棒和乏燃料水池中的燃料全部移出,这本身就是一个非常复杂和危险的过程。其次,封堆的过程需要将所有的放射性物质封闭在一个混凝土外壳中,这个过程也可能会引起更多的放射性物质泄漏。

       总之,福岛核电站的事故是一个非常复杂和严重的问题,需要采取多种措施来确保安全。虽然可以使用一些方法来封堆,但是这个过程需要面对许多挑战和风险。因此,需要采取全面的措施来确保安全,并且需要持续地进行监测和检查。

日本福岛核电站事故危害有多大

        2011年4月3日电日本福岛第一核电站2号反应堆建筑外壳出现的“裂缝”是造成含有大量放射性污水泄漏的主要原因。不过,当抢险人员用水泥将这条20多厘米长的裂缝封死后,放射性污水依然汩汩流出。技术人员怀疑,堵漏水泥可能被源源不断的污水“冲走”了。

       从裂缝中排出的污水1小时的放射量就相当于福岛核电站工人年度可允许辐射量的四倍。日本考虑用能快速凝固的“聚合体”材料来堵住裂缝。与此同时,日本还开始向核电站地面喷射这种类似“超级胶”的物质,希望能将扩散出来的放射性物质“粘”在原地。

       据悉,这条裂缝位于在2号机组取水口附近电缆竖井侧面的混凝土墙壁上。井内积水表面辐射水平超过每小时1000毫西弗,并正在通过裂缝连续流入太平洋。不过,负责核电站运营的东京电力公司称,福岛第一核电站其他5个反应堆附近建筑尚未发现类似的泄露现象。

       调查人员推测,上述裂缝可能是在“311”特大地震中产生的。由于地震引起的海啸将福岛第一核电站的冷却系统全部摧毁,因此造成四座反应堆中燃料棒温度过高。抢险人员只能通过注入海水这一既原始又破坏性强的方式来为其降温,结果产生了大量辐射超标的废水。

       此前,日本政府已经暗示,原本就“超期服役”的福岛第一核电站将在险情排除后彻底报废。受核泄漏污染影响,该电站周边的蔬菜牛奶中都发现了放射性污染物。因危机迟迟得不到解决,日本政府和东京电力公司都面临着来自民众的强大压力。

       东京电力公司副社长鼓纪男在接受媒体访问时表示,“东电将会对此次核泄漏事件负全责”。不过,日本政府认为,泄露到太平洋中的放射性污水将“很快被海水稀释到无害程度”。靠近福岛第一核电站附近的海水放射性辐射超标4000倍以上。

       过去三周来,救援人员为了帮助福岛第一核电站内的反应堆降温,向其喷射了数千吨海水和淡水。因电站内用来储藏冷却水的罐子都处于接近饱和状态,这些含有大量放射性物质的“冷却水”无处排放。救援人员只能将其暂时排放到漂在海上的临时储藏罐中。

       为了减少“水量”,抢险人员还开始考虑用别的方法为福岛第一核电站内的六座反应堆降温。其中包括“低温空气”等“雾化水”策略。因反应堆内核燃料棒温度依然较高,因此福岛第一核电站危机远远没有缓解,而且泄露的冷却水“源头”何在也是个谜。

       由15人组成的美军防辐射部队先遣队抵达驻日美军横田基地,并就在日任务和活动准备与日本自卫队进行协调。五角大楼计划派遣由约155人组成的防辐射部队帮助日本处理福岛第一核电站事故,这些特种部队队员来自美军海军陆战队,但具体任务待定。

       美国能源部长朱棣文表示,福岛第一核电站1号机组70%的核燃料棒、2号机组33%的燃料棒可能已经损坏,这让外界非常担心这座核电站的安全问题。朱棣文也表示,从该核电站上空测得的温度来看,1至4号机组的核废料池水位正常,温度处于可控状态。

       核电站安全壳构造

       福岛核电站的安全级别比切尔诺贝利高一级的核电站,它主要由塑料外壳与混凝土外壳构成,造成的辐射面积与危害会比切尔诺贝利小得多。

       韩联社2011年3月15日援引日本媒体的报道称,包括东京在内的日本关东地区,已检测到比通常更高的放射性物质。在茨城县检测到的放射性物质比平常高出100倍,神奈川县的放射性物质含量比平时高出近10倍。此外,在千叶县的市原市等地也检测到了较高的放射性物质。 日本气象厅2011年4月8日公布的数据显示,日本至少有20座火山在大地震后曾出现活跃迹象。另外,日本将通过新设地震仪调查海底断层。

       日本气象厅8日公布了3月份全国地震和火山活动概况,指出3月11日发生日本大地震后,全国至少有20座火山曾出现了活跃迹象。不过这些火山“目前还没有立即要喷发的征兆”,而且大部分已经恢复了平常状态。

       日本气象厅8日还宣布,为了详细调查引起地震的断层位置和形状,将于4月下旬至6月中旬新设海底地震仪,对从福岛县到千叶县的近海海底进行观测。为此次观测准备的40台海底地震仪具有“自动上浮”功能。它们到达海底后,自动开始观测,在收到母船信号后,会浮出水面,以供回收。

       日本国土地理院8日宣布,日本大地震导致的海啸浸水面积,在东北地区的青森、岩手、宫城和福岛四县合计达到了507平方公里。国土地理院的研究方法是通过航空照片调查农田、市区的浸水情况,然后再对照卫星照片进行计算。

       国土地理院还利用全球定位系统,观测到从岩手县到千叶县的太平洋沿岸地壳在大地震之后的约1个月时间内向东偏移了20至40厘米。

       另据《读卖新闻》8日报道,受大地震影响,东京等11个地区的上千栋建筑受到地下水上涌的损害,一些道路和公园等公共设施也因此无法使用。

       排放核废水,日本不能独断专行

       日本福岛第一核电站向海洋排放低浓度核废液后,韩国一度提出此举可能违反国际法。日本外相则表示,排放不会立刻带来问题,是否就此事先向有关国家通报,由日本自主判断。笔者认为,日本在福岛核事故处理中负有一系列国际法义务。虽然排放核废液是否必要与合理,取决于许多事实因素,在日本未向国际社会作出充分、全面、准确通报前尚难断定是否违反国际法,但日本最起码应确保各相关国家的充分知情权。

       根据一般国际法和《联合国海洋法公约》等国际条约,日本有义务保护和保全海洋环境,采取一切必要措施,防止、减少和控制海洋环境污染。对于可能对海洋环境造成重大影响的活动,应事先评价其可能影响,并观察、测算、估计和分析其影响。在获知海洋环境有受到污染损害的迫切危险或已经受到污染损害时,应立即通知可能受影响的其他国家及各主管国际组织。相较受自然灾害造成污染而言,日本主动排放核污水,理应更积极履行上述义务。

       日本官员震灾后首度进入福岛核电站内视察

       中新网2011年4月10日电 据台湾《中国时报》报道,日本经济产业大臣海江田万里9日前往福岛第一核电站视察,停留约45分钟。这是福岛第一核电站3月11日发生事故后,首度有日本政府官员进入该厂厂区。

       海江田万里负责监督日本全国50多座核能发电反应堆,他在9日上午抵达福岛县后,先与福岛县知事佐藤雄平会谈,随后进入福岛第一核电站视察。 2011年5月17日,日本各大媒体集中披露了福岛第一核电站受灾始末。这是东京电力公司首次向公众详细介绍福岛核电站的受灾情况。

       东京电力向公众展示了福岛第一核电站中央控制室记录灾情进程的白板。白板上显示,3月11日下午3时50分,也就是地震后约一个小时,计算水位的电源断了,炉内水位不明。当天晚上9时51分,东电开始禁止人员进入危险区域。

       福岛第一核电站救灾情况非常复杂,5月初向1号反应堆注入的10000吨海水,被发现只剩下不到5000吨,燃料棒出现了熔化的迹象。据东电方面推测,可能是燃料棒的温度烧穿了炉底,导致多达5000吨的高浓度废水外漏,进入了地下室和机房等空间内。但这样的环境无法让人进入作业如何抢修尚不得而知。

       最新的消息称,2号、3号反应堆内的压力也非常不稳定。2号反应堆底部的压力抑制室损伤,而3号反应堆的顶部建筑物损坏。据推测,2号、3号反应堆内的燃料棒也有熔化的可能,这无疑是一场更大的灾难。

       两天前,东电对福岛第一核电站3号机组的取水口海水进行了取样,检测结果显示,海水中铯-134的浓度是每毫升200贝克勒尔,是日本国家规定的安全标准值的3300倍,意味着3号反应堆内的高浓度污水同样有泄漏的迹象。据估计,3号机组内部约有2200吨污水,福岛第一核电站正在将其以12吨/小时的速度转移到附近的废物集中处理厂。同时,为了储存核废水,日本政府从静冈县调用了一艘大船,用于临时存放高浓度污水,内部中空的水箱能够容纳10000吨污水。 日本内阁官房长官枝野幸男2011年5月17日宣布,日本政府决定接受IAEA调查团到福岛第一核电站事故现场调查。IAEA近20名核专家将于5月24日至6月2日,实地调查并“初步评估”核电站泄漏事故。

       这是日本政府首次同意IAEA专家直接进入福岛第一核电站调查。

       IAEA调查团将由英国首席核查员怀特曼带领。日方将派出一个小组,由首相特别助理细野豪志负责,与调查团讨论事故处理方案。

       IAEA发表声明说,调查团将了解日方从核事故汲取了哪些教训,根据原子能机构设定的安全标准,确认哪些领域需要进一步评估。

       IAEA召开核能安全部长级会议,调查团届时将提交核事故评估报告。日方也将提交报告。

日本核泄漏是哪年发生的?

       福岛核电站事故危害:

       1、2012年8月21日,日本东京电力公司宣布,从福岛第一核电站半径20公里海域捕获的大泷六线鱼体内,检测出相当于每千克鱼2.58万贝克勒尔的放射性铯,创下福岛第一核电站事故以来的最高纪录。

       2、2013年4月28日报道,鉴于日本东京电力福岛第一核电站地下蓄水池曾发生泄露,东电一直对蓄水池外侧突然进行辐射浓度监测。据东电公司2013年4月28日对前一日在1号蓄水池外侧的土壤采集到的核污水进行分析,分析结果显示核污水辐射浓度比2天前上升超过10倍。蓄水池外侧土壤采取水的地点共有2处,2地点之前的辐射浓度一直维持较低水平。日本东电公司对此称:“原因还不清楚。将继续进行监测。”

       3、2013年3月16日,日本福岛第一核电站4号反应堆所在机房16日清晨再度发生火灾。当地消防队员正在开展紧急灭火行动,但起火原因不详。15日,这座反应堆内的“乏燃料池”因温度过高发生火灾,所幸被及时扑灭,但已经造成放射性污染物大面积泄漏。

福岛的核泄漏都会造成哪些危害?为什么时候才能平复?

       日本核泄漏是2011年发生的

       2011年3月11日下午,日本福岛县周边海域发生9.0级特大地震,地震引发的巨大海啸袭击了福岛第一核电站,造成核电站1至3号机组堆芯熔毁。路透社指出,这是自1986年苏联切尔诺贝利核事故之后最严重的一场核事故。

       BBC指出,由于地震、海啸和核事故的影响,总共有近50万人被迫离开家园。大量日本民众生活受到严重影响,并对东京电力公司提起诉讼要求赔偿。然而,十余年过去了,仍有数十件诉讼案件未被了结。

日本最高法院首次要求东电赔偿福岛灾民

       当地时间3月4日,围绕因日本福岛核泄漏事故而避难的居民们要求东京电力公司和日本赔偿的3个集体诉讼,日本最高法院第2小法庭做出了驳回东电几乎所有上诉的决定。据此,共计约3600名原告将获得14亿日元(约合人民币7670万元)的赔偿。

       报道称,3个集体诉讼分别为,福岛县和邻县的受灾者提出的福岛诉讼,前往千叶县的避难者提出的千叶诉讼以及去往群马县避难的群马诉讼。福岛诉讼要求赔偿10.1亿日元,千叶诉讼要求赔偿1.2亿日元,群马县要求赔偿2.7亿日元。日本政府和东电负担赔偿款的比例,将通过最高法院作出最终判断。

       2011年3月11日,日本东北部发生9级大地震,震中位于西北太平洋海底断层,属于典型的海底大型逆冲断层地震。加之震中距离日本东部海岸极近,震源深度仅10千米,由此引发最高达23米的海啸给东部沿岸地区造成毁灭性的破坏。其中包括位于福岛县的福岛第一核电站。

与世界上大多数核电站类似,福岛第一核电站建设在海边,这主要是因为海水可以很方便地被用来冷却反应堆,消耗其多余的热量,从而确保核电站的安全。福岛核电站的6个反应堆属于沸水反应堆,这些轻水堆总功率达470万千瓦,由美国通用电气公司研发设计,于1967年动工,至1979年全面投产。

日本大地震发生后,核电站工作人员按安全程序迅速对反应堆实施闭堆作业,他们关闭了所有反应堆并试图阻断裂变反应。由于停止工作的反应堆无法为冷却电机提供电能,核电站需要另外启动柴油发电机来为反应堆持续输送冷却水。然而几十分钟后15米高的海啸越过核电站仅5.7米高的防潮围堰、冲上10米高的堤坝、淹没了发电厂的应急柴油发电机,1~4号反应堆失去冷却水循环,只剩5、6号反应堆的冷却水发电机还可以正常工作。

       作为第二代核反应堆技术,福岛核电站的反应堆在关闭后需要持续的外部冷却来去除堆芯燃料棒的衰变热能,否则将发生堆芯熔化,酿成严重的核事故。不幸的是,福岛核电站用来为冷却水泵供电的应急柴油发电机由于受到海水浸泡失效,1~4号反应堆堆芯在蒸发完其中的冷却水后迅速升温。高温使1~3号反应堆中的热锆燃料包壳与水反应各产生800~1000千克的氢气。氢气排出后与空气混合,并最终导致爆炸,爆炸摧毁了反应堆内部的结构设施,进一步增加了救援难度。

核泄漏

       福岛核事故发生后,危险的放射性物质迅速向四周扩散,一年后(2012年3月)日本东北部大部分地区都检测到放射性物质,其辐射区域甚至波及东京湾的一些地区。下图为截至2012年3月检测到的放射性地图:

       2012年5月24日,东京电力公司发布了报告称,2011年3月估计有531.1×10^15 贝克勒尔(531.1PBq)的碘-131、铯-134和铯-137被释放到环境中,其中520 PBq被释放到大气中,18.1PBq被释放到海洋里。其后东电又改口称被排入大气中的放射性物质至少有900PBq,与此同时,检测人员还在大气和海水中发现了少量的放射性物质锶和钚。事实上,到目前为止没有人能给出确切的排放量。鉴于这些放射性物质中碘和铯对人体健康危害甚大,尽管碘-131的半衰期只有8天,而铯-137的半衰期超过30年,因此造成广泛的担忧。

       核事故发生后不久,约有520吨高放射性污水泄漏入大海,其后陆续有超过30万吨受到污染的废水被从反应堆中抽出来排入海中,根据法国放射防护与核安全研究所 2011年10月发表的一份报告,半年内大约有2.7×10^16 Bq的铯-137(约8.4千克)进入海洋。这些放射性物质没有对日本近海造成重大影响的原因之一,是在日本东部海域存在着世界最强的海流,这种被称为“黑潮”的洋流能迅速将被污染的海水带入太平洋,汇入北太平洋环流。

核污染的应对措施

       福岛核事故发生后,东电公司试图控制核辐射的影响范围,但氢爆炸对核电站的毁坏程度超出想象,令救援者手足无措,他们无法及时取出其中正在融化的核燃料棒。

       反应堆的氢爆炸掀掉了核电站的上盖,同时也令氢气不再聚集,救援人员通过持续向乏燃料池注水降温,同时向建筑中输入氮气以隔绝其中的空气,这使得空气中放射性物质的浓度持续下降,但反应堆废水依然向下渗透进入大海。

       为防止核污水继续渗漏,救援人员一方面在1~4号厂房外围加固围堰,采取冷冻的办法堵住泄漏,同时将乏燃料池中的冷却水抽出来处理后注入到1000余个大大小小的储存罐里,迄今为止存储的污水已经超过了100万吨。

       从乏燃料池中抽取的废水中含有大剂量的碘-131、铯-134和铯-137等放射性物质,救援人员通过向其中加入多孔的沸石来吸附这些物质,然后将这些沸石与核电站周围被沾染的地表土一起存储起来。但是存储罐中依然有大量的氚无法被清除,如果将这些废水排入大海,依然会对海水造成污染,进而威胁海洋生物的生存。

废水排放计划

       鉴于每天150吨的新增污水在2020年就将灌满福岛核电站的废水存储罐,东电公司和相关方试图将多余的含有氚的废水排入大海。

       值得一提的是,福岛核事故发生后的相当长一段时间里,它的放射性污水都是直接排入大海,并且在其后的几年中污水泄漏事故不断发生,实际上核废水的排放一直没有停止过。

       网络上经常流传着下面这张,有人试图以此说明福岛核电站排放的废水给太平洋及沿岸地区造成了严重的危害:

       事实上这是一张311大地震发生后的海啸影响图,这张图由美国气象局绘制,其中的暖色表示了海啸影响的范围和高度,它与核污染无关。

       福岛放射性污水走的是另一条线路,它会随着日本东部的黑潮流向西北太平洋,然后与北太平洋环流汇合,一路向东,直到美国西海岸,然后南下,沿赤道返回西太平洋。也就是说它在太平洋走的是一个顺时针的路线。

       从311大震后对福岛核事故的报道来看,美国媒体对泄入太平洋的核污水并没有表现过多的担忧。因为海洋学家们认为这些高浓度的污水会很快被海洋稀释,当它们到达加州西海岸时不会构成严重的威胁。但如果东电公司主动向大海倾倒核废水,其性质与此前就会不同。

       废水的倾倒仅是时间问题,东电只有两个地点可以选择,一是在远离其本土的西北太平洋面,二是选择新西兰东北方向的南太平洋环流路线上,这两个区域远离所有人类居住地,并且可以期待洋流来稀释这些辐射物质。

       氚在海洋中是天然存在的物质,它由自然界中放射性物质衰变产生,一般认为大海中少量的氚不会对海洋生物构成威胁,事实上每个人体内都有极微量的氚存在。氚不会通过皮肤吸收进入人体,但它的半衰期长达12年,因此可以通过食物被人吸收。

       与氚的低威胁性不同,如果被排放的废水中存在尚未处理干净的其它放射性物质,它们会对海洋生物造成影响,进而通过食物链进入人体,这是需要密切关注的问题。

       今天关于“日本福岛核事故”的探讨就到这里了。希望大家能够更深入地了解“日本福岛核事故”,并从我的答案中找到一些灵感。